La revue culturelle critique qui fait des choix délibérés.

La revue culturelle critique qui fait des choix délibérés.

Devoirs de vacances
| 26 Juil 2016

“Le Nombre imaginaire” ou les mathématiques comme terrain de jeu où l’imagination seule fixe les limites.

Plaisirs de farniente et de lecture… une fois n’est pas coutume, cette (courte) chronique offre quelques suggestions pour occuper votre esprit s’il en est besoin.

D’abord, la toujours intéressante chronique de Jean-Paul Delahaye dans Pour la Science, intitulée Logique et Calcul. Certes plus technique que celle de votre serviteur, car destinée à un public a priori davantage versé dans les sciences, elle traite avec bonheur de sujets d’actualité mathématique très variés, parfois fascinants, et généralement abordables (vous n’avez pas besoin de vous casser la tête sur les encadrés plus matheux). Au programme de ce mois de juillet, on trouve un problème dit “des 50 prisonniers” dont je vous laisse découvrir l’énoncé et l’étonnante solution. Sans vous gâcher la surprise, je peux sans doute vous révéler qu’il s’agit de ce type de problème où tout le monde gagne ou perd en même temps. Chaque prisonnier cherche tour à tour son nom dans un ensemble de boîtes et a une chance sur deux de l’y trouver; mais il ne sera libéré que si tout le monde gagne. Il est gardé à l’isolement après avoir joué, et son passage ne laisse aucune trace. Si chacun se contente de jouer au hasard, la probabilité que tout le monde gagne et soit libéré est infime. Peut-on faire mieux ? Oui, en créant un couplage, une corrélation entre les succès individuels des uns et des autres : avec la stratégie adoptée, je gagne plus souvent si les autres gagnent aussi.

Dans le même numéro de cet excellent magazine, une réflexion passionnante de Christian Walter sur la finance dite éthique, et en particulier sur le caractère performatif des algorithmes qu’elle utilise. Les mathématiciens – et les économistes comme nous l’avons vu – aiment à penser que leurs modèles sont éthiquement neutres, puisqu’ils représentent une vue du monde mais ne sont pas le monde : le processus de choix du modèle peut donc être soumis à critique morale, mais pas le modèle lui-même. Or, comme le fait remarquer l’auteur, ceci n‘est pas vrai dans le monde de la finance, dans la mesure où les algorithmes d’arbitrage font bien plus que modéliser la réalité : ils forment la réalité financière elle-même puisque toutes les transactions réelles en sont issues. Un algorithme financier est donc un énoncé performatif, qui rend actuel ce qu’il décrit. Une approche éthique de la finance doit en conséquence passer par une analyse critique morale des modèles et des algorithmes eux-mêmes. Choisir de minimiser le risque moyen ou de limiter les extrêmes, par exemple, aboutira à des arbitrages différents et aura des conséquences très concrètes.

Douglas Adams, Le Guide du Voyageur Galactique, traduit de l'anglais par Jean Bonnefoy, Gallimard, coll. Folio SF, 2010. Le nombre imaginaire, chronique mathématique de Yannick Cras dans délibéré

Douglas Adams, Le Guide du Voyageur Galactique, traduit de l’anglais par Jean Bonnefoy, Gallimard, coll. Folio SF, 2010.

Enfin, on pourra lire ou relire avec profit l’hilarante et autoproclamée unique trilogie en cinq volumes de Douglas Adams, Le Guide du Voyageur Galactique (anciennement Guide du Routard Galactique, il y aura eu problème de droits…). Absurde, nonsense, dérision et humour anglais y côtoient un jeu délicieux et d’une rare finesse avec les concepts classiques de la science-fiction. Quand on découvre de quelle question le nombre 42 est la réponse, force en est (surtout si l’on est lecteur régulier de cette chronique) de conclure que l’Univers est effectivement assez Shadok…

 

Bonnes vacances à ceux qui partent, et à la semaine prochaine !

Yannick Cras
Le nombre imaginaire

[print_link]

0 commentaires

Dans la même catégorie

Exx Machina #44: Un joli papiyon

Si un concept subjectif et son dual sont en fait la même chose, ce n’est plus un treillis que tu manipules: c’est le papyion lui-même, dans lequel chaque concept et son dual se confondent en un seul cercle vu en transparence, et c’est ce cercle qui est le concept subjectif. Si on va par là, tout notre travail sur les treillis est à mettre à la poubelle. Attention, je ne dis pas que c’est absurde, je dis juste que si c’est vrai tu viens de nous rajouter quelques mois de boulot.

Ex Machina #43 : Delta est un génie

Delta ne verra jamais Delta. Pourtant, il lui faudrait bien un concept de “moi”, non? Donc, si Delta ne peut pas se percevoir elle-même, il faut bien qu’elle s’invente. D’autant plus que dans mes dessins Delta était elle-même un triangle bleu!

Ex Machina #42: Une question d’attention

Nous dotons Delta d’un treillis d’expérience qui contient certains concepts du treillis subjectif. À tout instant, certains de ces concepts sont activés, mobilisés: c’est à eux que Delta pense. En fonction de ses pensées, les perceptions de Delta sont filtrées, orientées par un mécanisme inconscient, et Delta percevra consciemment une version résumée de la réalité au lieu de tous ses détails. Elle la comparera aux concepts de son treillis d’expérience, ce qui pourra l’amener à en mobiliser d’autres, modifiant ainsi ses pensées.

Ex Machina #40: Pas le choix

Un choix n’est possible que si les deux branches de l’alternative sont ouvertes. Comment diantre un programme pourrait-il avoir le choix d’effectuer ou non une action donnée, puisque c’est in fine un calcul qui en décidera?